nineninesix.ai

KaniTTS v0.3

License

Overview

KaniTTS pretrain 0.3 uses a two-stage pipeline combining a large language model with an efficient audio codec for exceptional speed and audio quality. The architecture generates compressed token representations through a backbone LLM, then rapidly synthesizes waveforms via neural audio codec, achieving extremely low latency.

Key Specifications:

  • Model Size: 400M parameters
  • Sample Rate: 22kHz
  • Language: English, Chinese, Korean, Spanish, German, Japanese, German
  • License: Apache 2.0

Performance

On NovitaAI RTX 5090 using vLLM:

Datasets

Use Cases

  • Conversational AI: Real-time speech for chatbots and virtual assistants
  • Edge/Server Deployment: Resource-efficient inference on affordable hardware
  • Accessibility: Screen readers and language learning applications
  • Research: Fine-tuning for specific voices, accents, or emotions

Limitations

  • Performance degrades with inputs exceeding 15 seconds (need to use sliding window chunking)
  • Limited expressivity without fine-tuning for specific emotions
  • May inherit biases from training data in prosody or pronunciation
  • Optimized primarily for English; other languages may require additional training

Optimization Tips

  • Multilingual Performance: Continually pretrain on target language datasets and fine-tune NanoCodec
  • Batch Processing: Use batches of 8-16 for high-throughput scenarios
  • Hardware: Optimized for NVIDIA Blackwell architecture GPUs

Resources

Models:

Examples:

Acknowledgments

Built on top of LiquidAI LFM2 350M as the backbone and Nvidia NanoCodec for audio processing.

Citation

@inproceedings{emilialarge,
  author={He, Haorui and Shang, Zengqiang and Wang, Chaoren and Li, Xuyuan and Gu, Yicheng and Hua, Hua and Liu, Liwei and Yang, Chen and Li, Jiaqi and Shi, Peiyang and Wang, Yuancheng and Chen, Kai and Zhang, Pengyuan and Wu, Zhizheng},
  title={Emilia: A Large-Scale, Extensive, Multilingual, and Diverse Dataset for Speech Generation},
  booktitle={arXiv:2501.15907},
  year={2025}
}
@article{emonet_voice_2025,
  author={Schuhmann, Christoph and Kaczmarczyk, Robert and Rabby, Gollam and Friedrich, Felix and Kraus, Maurice and Nadi, Kourosh and Nguyen, Huu and Kersting, Kristian and Auer, Sören},
  title={EmoNet-Voice: A Fine-Grained, Expert-Verified Benchmark for Speech Emotion Detection},
  journal={arXiv preprint arXiv:2506.09827},
  year={2025}
}
@dataset{masrispeech_full,
  author       = {Yahya Muhammad Alnwsany},
  title        = {MasriSpeech-Full: Large-Scale Egyptian Arabic Speech Corpus},
  year         = {2025},
  publisher    = {Hugging Face},
  url          = {https://huggingface.co/collections/NightPrince/masrispeech-dataset-68594e59e46fd12c723f1544}
}